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Abstract

This paper presents an analytical definition of lateral and temporal safety buffers
to be used in state-based conflict detection algorithms. A lateral buffer is a distance
to be added to the minimum lateral separation to accommodate for uncertainty in the
surveillance information. A temporal buffer is a time to be added to the lookahead
conflict detection time to accommodate for dropped surveillance messages due to signal
attenuation. These safety buffers are defined using precise mathematical statements
and the main theorems give numerical upper bounds on the probability of a missed
alert. A particular case is considered where absolute bounds on the errors in position
and velocity information are known. In this case, under well defined assumptions
provided in the paper, safety buffers are given that guarantee mathematically that the
probability of a missed alert is zero. The results are presented as theorems, which were
formally proven using a mechanical theorem prover.
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Table of Acronyms and Symbols

ACCoRD | Airborne Coordinated Conflict Resolution and Detection
ADS-B | Automatic Dependent Surveillance-Broadcast
CD&R | Conflict Detection and Resolution
DO-242A | Minimum Operational Performance Standards for ADS-B
GPS Global Positioning System
NACp | Navigation Accuracy Category for position
NACv | Navigation Accuracy Category for velocity
PVS Prototype Verification System
« Time interval between consecutive ADS-B broadcasts
A Random variable representing number of dropped ADS-B messages
D Minimum horizontal distance
EaosEai Upper bounds on track errors (ownship and intruder)
£40,£9i | Upper bounds on ground speed errors (ownship and intruder)
£s0,Esi | Upper bounds on position errors (ownship and intruder)
Ev0,Evi Upper bounds on velocity errors (ownship and intruder)
n Probability that a sent ADS-B message will be received
A Temporal safety buffer
s,V Relative actual aircraft state (position and velocity vector)
s v Relative reported aircraft state (position and velocity vector)
S0,Vo Actual ownship state (position and velocity vector)
S0, Vo™ | Reported ownship state (position and velocity vector)
S;i,V; Actual intruder state (position and velocity vector)
si”,vi™ | Reported intruder state (position and velocity vector)
t Time variable
T Lookahead time
(0 Lateral safety buffer

1 Introduction

Conflict Detection and Resolution (CD&R) in Air Traffic Managament systems has been
an area of active research since the last decade. In 2000, Kuchar and Yang [15] presented
a taxonomy of conflict detection and resolution modeling methods that surveyed 68 differ-
ent algorithms. One category in that taxonomy concerns the state propagation method.
Probabilistic CD&R approaches use stochastic methods on predicted trajectory errors for
estimating the probability of conflict or collision [2,19-21]. These methods are generally
used in ground systems as they are often computationally intensive.

Advances in global positioning systems and communication technology enable air traf-
fic concepts to be considered where the aircraft separation requirement relies on airborne
computer-based conflict detection and resolution (CD&R) systems. In some of these con-
cepts, the conflict management functionality is structured in several layers [25]. In the
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upper layers, strategic CD&R systems provide advanced separation assurance functional-
ity that takes into account long lookahead times, flight plans, special airspace restrictions,
winds, and weather [14]. The lower layers typically deal with tactical decisions for short
lookahead times. Since the lower layers provide the last line of defense in a multi-layered
concept, tactical CD&R systems are considerably simpler and more efficient than strategic
systems.

State-based CD&R algorithms [1, 6,8, 12, 17] probe and solve conflicts by only using
aircraft state information, i.e., the current position and velocity vectors of the aircraft, and
a nominal point-mass model of aircraft trajectories. These assumptions allow for efficient
implementations that rely on analytical methods. To accomodate for the difference between
the actual aircraft trajectories and the predicted straight line trajectories used by these
methods, it is generally assumed that state-based CD&R algorithms are frequently executed.
Typically, state-based CD&R systems that are used in airborne concepts [12] are executed
in each aircraft as frequently as position and surveillance information is updated, e.g., 1 Hz.

Given the safety-critical nature of tactical separation assurance systems, some state-based
CD&R algorithms [6,9,16,17] have been formally analyzed for safety properties such as in-
dependence, i.e., minimum separation is guaranteed when one of the aircraft maneuvers, and
implicit coordination, i.e., minimum separation is guaranteed when both aircraft maneuver
with no explicit coordination between them [7]. These safety properties highly depend on
the assumption that aircraft state information is accurately known.

The position provided by global navigation satellite systems like Global Positioning Sys-
tem (GPS) is accurate up to about ten meters' and surveillance information systems such
as Automatic Dependent Surveillance-Broadcast (ADS-B) lose messages due to signal at-
tenuation [24]. Errors in position and velocity negatively affect the safety performance of
state-based CD&R systems. To mitigate these effects, state-based CD&R algorithms are
used with safety buffers that ensure that the probability of a missed alert is low. This paper
concerns lateral and temporal safety buffers for conflict detection algorithms. A lateral safety
buffer increases the minimum lateral separation distance between aircraft to accomodate for
uncertainty in surveillance information. A temporal safety buffer increases the lookahead
time used in conflict detection logics. These safety buffers decrease the number of missed
alerts but increase the number of false alerts.

Although related, safety buffers for conflict detection algorithms are not the same as safety
buffers for conflict resolution algorithms. In particular, a precise formulation of safety buffers
for conflict resolutions algorithms needs to take into account the effect of uncertainty on the
resolution maneuvers. This paper only considers the problem of estimating guaranteed safety
buffers for conflict detection algorithms. A preliminary work on safety buffers for conflict
resolution algorithms is presented in [11].

Usually, appropriate values for safety buffers are determined by experimentation and
simulation. Gazit and Powell propose in [10] a separation standard based on the probability
distribution functions of GPS and radar errors. In [26], Zhao presents a semi-analytical
approach to determine appropriate separation minima between aircraft that takes into con-

!See http://www.kowoma.de/en/gps/errors.htm.



sideration wake-vortices and flight technical errors. That paper defines the uncertainty region
as the difference between the measured and actual trajectories in an interval of time. The
uncertainty region is an ellipsoid and the interval time is the maximum between the surveil-
lance interval and the time needed for conflict avoidance. In [4], Consiglio et al. measured
the impact of wind prediction to determine the additional safety buffer needed to preserve
separation. The study is based on high-fidelity simulation. In the context of strategic conflict
detection, Karr [13] describes different types of prediction error and proposes an algorithm
to detect conflicts between trajectories that uses a notion of dynamic safety buffers.

This paper presents a formal development of lateral and temporal safety buffers for
conflict detection algorithms. The following assumptions are made throughout the paper.

e Aircraft are assumed not to change velocity during the lookahead time.

e Subsequent dropped ADS-B messages are independent events.

Specific formulas are given for these safety buffers, and a theorem is stated that represents a
proved result that these formulas are correct and therefore satisfy a key probabilistic property.
Section 2 contains formal definitions related to conflict detection algorithms. Section 3
models GPS and ADS-B errors with random variables on an arbitrary probability space. It
is proved in that section that given random variables for positions and velocities, conflict
between aircraft is also a random variable. Section 4 gives specific formulas for safety buffers
for distance and time that can be used to provide upper bounds on the probability that a
conflict detection algorithm will incorrectly miss a conflict. These formulas are then used to
give safety buffers that guarantee that there are no missed conflicts, in the case where absolute
bounds are known on position and velocity vectors for two aircraft and the probability of a
given ADS-B message being dropped is zero. Finally, Section 5 presents a table that contains
specific upper bounds on the probability that a correct conflict detection algorithm will miss
a given conflict. This table depends on the document DO-242A [24], which specifies several
system performance confidence-levels that are to be included in ADS-B messages detailing
how precise and trusted the contained state information is.

The mathematical development presented in this paper has been specified and formally
verified in the Prototype Verification System (PVS) [18].2 PVS is a proof assistant that
consists of a specification language, based on classical higher-order logic, and a mechanical
theorem prover for this logic. The PVS specification language allows for the precise definition
of mathematical objects such as functions and relations, and the precise statement of logical
formulas such as lemmas and theorems. Proofs of logical formulas can be mechanically
checked using the PVS theorem prover, which guarantees that every proof step is correct
and that all possible cases of a proof are covered. All lemmas and theorems presented in this
paper have been mechanically checked in PVS. For the sake of simplicity, only proof sketches
of the main results are presented in the paper. The development presented here, including
all definitions and formal proofs, is part of the Airborne Coordinated Conflict Detection and

Resolution (ACCoRD) framework [17].

2Note to the reviewers: the formal mathematical development has been included as part of the submitted
work and is available through the editor of the journal.
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One of the advantages to mathematical derivations of properties is that it helps to identify
those assumptions needed for a result to be true. It is often possible, when examining the
derivation of a mathematical property, to note points where explicit assumptions are used
and to record a list of those assumptions. In fact, a mechanical theorem prover such as PVS
is much more powerful at recording the assumptions needed for a mathematical result. In
fact, if a statement can be proved correct in a mechanical theorem prover, then each and
every assumption needed can be explicitly read from the statement itself. Thus, if a result
is proved correct in such a theorem prover, then it is absolutely correct in a mathematical
sense and no further assumptions are needed.

The use of a formal language, e.g., in this case the specification language of PVS, enforces
rigorous definitions of mathematical objects, where all dependencies are clearly specified.
This level of rigor guarantees a very high confidence on the correctness of the results presented
in this paper. However, this also makes the notation heavy and difficult to read for the non-
expert reader. For this reason, the work presented here uses standard mathematical notation
and does not assume that the reader is familiar with the syntax or semantics of the PVS
language.

2 State-Based Conflict Detection

Pairwise state-based conflict detection systems use the state information of two aircraft,
which here are referred to as the ownship and the intruder, to detect conflicts between them.
The state information for an aircraft includes its current position and velocity, and these are
represented by points and vectors in a Cartesian coordinate system. Since this paper focuses
on lateral separation, it considers the two-dimensional space R2. It is noted, however, that
the results presented in this paper hold in the three-dimensional airspace as well. That is,
the lateral safety buffers presented in this paper can be safely used by 3D conflict detection
algorithms.

Aircraft trajectories are represented by a point moving at constant linear speed. The
vectors s,, v,, s;, and v; will be used to represent the ownship’s current position and velocity
and the intruder’s current position and velocity (at time ¢ = 0), respectively. Thus, the
predicted states of the ownship and the intruder at time ¢ are given by s, +tv, and s; +tv;,
respectively. In later sections, s,, v,, s;, and v; denote random variables with values in R? to
account for uncertainty in these vectors.

Under nominal operations, aircraft are required to maintain a certain separation. In the
two-dimensional airspace, the separation requirement is specified by a minimum horizontal
distance D. A predicted conflict between the ownship and the intruder aircraft occurs when
there is a time t € [0,7] at which the predicted horizontal distance between the aircraft is
projected to be less than D, i.e.,

(s +tv,) — (si +tVy)|| < D.

The time T is called the lookahead time. Typical values for D and T are 5 nautical miles
and 5 minutes, respectively. In this paper these values are considered to be parameters.



Since (s, +tv,) — (s; +tv;) = (8o — ;) + t(v, — Vv;), the predicate that characterizes
conflicts can be defined in terms of the relative vectors s = s, —s; and v = v, — v;, lL.e.,
the relative position and velocity vectors, respectively, of the ownship with respect to the
intruder. The predicted conflict predicate predicted_conflict?, which has as parameters the
horizontal distance D, the lookahead time T, and the relative position and velocity of the
aircraft, is formally defined as follows.

predicted_conflict?(D, T,s,v) =3t € [0,T] : ||[s+tv] < D.

Conflict detection algorithms check whether the predicate predicted_conflict? holds for the
actual states of two aircraft. This paper considers a pairwise approach to conflict detection
where each aircraft uses a conflict detection algorithm. The approach proposed in this paper
takes the point of view of the ownship. However, the situation is symmetric from the point
of view of the intruder aircraft.

Formally, a two-dimensional conflict detection algorithm is as a function cd with param-
eters D and T, written in subscript, that takes as arguments the state information of two
aircraft. It returns a value in B = {True,False} that represents whether or not a conflict
has been detected.

The state information used by a conflict detection algorithm is provided by positioning
and surveillance systems such as GPS and ADS-B. In order to distinguish the actual states of
the aircraft, represented by s,, v,,s;, v;, from the reported states provided by these systems,
the measured position and velocity of the ownship and intruder aircraft will be represented
by the vectors s,™, vo™ and s;"*, vi™, respectively.

Since conflict detection algorithms are safety critical applications, it is imperative that
they compute an answer that is trustworthy. A conflict detection algorithm is said to be
correct if in the absence of measurement errors the algorithm does not issue false alerts and
does not miss any alerts.

Definition 1 A conflict detection algorithm cd is correct if and only if for all positions and
velocity vectors So, Vo, Si, Vi, So' s Vo 'y 8i, and vi™ , with s;™ = S,, Vo™ = Vo, 8" = s;, and
vi" = v;, the following formula holds

cdpr(se™, Vo, si", vi"") = True <= predicted_conflict?(D,T,s, — s;, vV, — V;).

In theory, conflict detection algorithms are designed to be correct, e.g., the conflict detection
algorithm CD2D, which is part of NASA’s Airborne Coordinated Conflict Resolution and
Detection (ACCoRD) framework [17], satisfies this property. In practice, the existence of
uncertainty in surveillance information implies that the equalities s, = s,, Vo™ = Vv, 8;"" =
s;, and vi” = v; may not hold. Thus, conflict detection algorithms, including correct
algorithms such as CD2D, detect conflicts with inexact information, and they can therefore
have false and missed alerts. Therefore, CD&R algorithms are generally used with slightly
increased D and T values to accommodate for state information uncertainty. The added
values are called lateral and temporal safety buffers, respectively, and their sizes are often
determined by experimentation and simulation.



Increasing the size of these safety buffers will reduce number of missed alerts. However,
as the size of the safety buffers increases, the number of false alerts increases as well. Missed
alerts are an obvious cause of safety concerns. False alerts have also safety implications as
they may diminish the confidence that crew members and air traffic controllers have on the
separation assurance logic. Appropriate choices of safety buffers are crucial to the safety
performance of a conflict detection system.

This paper provides analytical definitions of safety buffers and sufficient conditions under
which correct conflict detection algorithms can be used without missing alerts. More pre-
cisely, definitions of non-negative numbers ¢ (lateral safety buffer) and A (temporal safety
buffer) are provided such that under well-defined hypotheses on the information and com-
munication uncertainty, it can be proved that

predicted_conflict?(D,T,s, — 8;, Vo — Vi) => cdpiyp1+2(S0s Vo ', 8i", Vi) = True.

Furthermore, given probability distributions on errors in the differences s, — s,™, v, — v,
s; —s;i™, and v; — v;™, this paper provides a formula for an upper bound on the probability
of missed alerts. A practical example is given where, under well-defined hypotheses, this
probability is nonzero.

3 State Information Uncertainty

This paper considers two kinds of uncertainties: uncertainty due to measurement errors in
global positioning systems such as GPS, and uncertainty due to infrequent traffic informa-
tion updates from surveillance systems such as ADS-B. The effects on predicted conflicts,
which assume constant velocities, are considered, so uncertainties due to possible velocity
changes during the lookahead time period are not considered. Concretely, state information
uncertainty is modeled through random variables that represent measurement errors due to
(1) GPS position inaccuracy and (2) dropped ADS-B messages. Here, GPS and ADS-B are
used for illustration purposes. The approach presented here could be adapted for uncertainty
due to devices other than GPS and broadcast methods other than ADS-B.

Recall that a random variable is a function f: Q — X, where (2,0(2)) is a probability
space, i.e., Q is a set, 0(Q2) is a o-algebra on the set 2 (a set of subsets of 2), and there is
a probability function P that maps elements of o(2) to probabilities in the interval [0, 1];
cf. [22]. The set X is any measure space, and the function f must be measurable, in the
sense of real analysis [23]. In what follows, the same probability space (€2,0(Q2)) will be
used to model all of the random variables, e.g., GPS inaccuracy, dropped ADS-B message,
conflict detection, etc. This is mathematically valid because even if two random variables are
modeled with different probability spaces for their respective domains, equivalent random
variables can be constructed whose domains are the same probability space. In fact, any
random variable has an equivalent representation as a random variable with domain given
by the uniform distribution on the interval [0, 1]; cf. [5].

Given a subset S of Q such that S € ¢(£2), the probability function P gives the probability
P(S) of S. Any random variable f: Q@ — X induces a probability Prob on measurable
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subset of X that is defined by Prob(Y) = P({x € Q| f(x) € Y}), where Y is measurable.
In addition, if X is a subset of the real numbers, then it is standard notation to define
Prob(f >r)=P{{x € Q| f(x) >r}) for r € R.

3.1 Modeling Uncertainty with Random Variables

Each aircraft uses GPS to determine its current state, i.e., its position, s, or s;, and velocity
vector, v, or v;. ADS-B broadcasts this information to the airspace at regular intervals, and
the interval between ADS-B broadcasts will be denoted «. Typically, the ADS-B system
will be configured to broadcast this information once per second, i.e., & = 1 second. Due to
signal attenuation, it is possible that several consecutive position and velocity updates from
the intruder have been dropped and were therefore not received by the ownship. This results
in greater uncertainty in the values of the intruder’s current state, i.e.;, s; and v;. ADS-B
message loss due to signal attenuation can be modeled as random variable:

A: Q — N,

where (£2,0(2)) is a probability space. The random variable A returns the number of
consecutive ADS-B messages from the intruder that were not received by the ownship, since
the last received message from the intruder. It is important to note that the length of time
since the last ADS-B update from the intruder was received by the ownship is given by
multiplying the return value of A by a. This length of time is modeled by the random
variable a4 that maps x € €2 into aA(x), where the units of the domain are implicitly the
units of a.

Standard inaccuracies in GPS position predictions, which are also used to predict veloc-
ities, imply that the measured positions s,™,s;”" and velocities v,™, v;”" may have errors.
Thus, the actual positions s,,s; and velocities v,,v; are all modeled as random variables
from € to R?:

S,8i,Vp, Vi Q— Rz.

The vectors s; and v;™ represent the intruder’s reported position and velocity vectors,
respectively, from the last ADS-B signal that was received by the ownship, and the vectors
so™ and v, represent the ownship’s measured position and velocity at that time. If the
current time is ¢ = 0, then the time at which s, s;™, v, vi"”* were measured is given by
the random variable aA. Thus, if it is known that there are no errors in the measurements
So™, 8™, v, vi", then the equalities s, — aAv, = s,", s; — aAv; = s;"", v, = v, and
v, = v;™ all hold as random variables 2 — R?. The random variables oA, v,, and v; have
units given by time, speed, and speed, respectively.

This paper focuses on the case where there are possible errors in the measurements
So’™, i, v, vi™, modeled by the random variables s,,s;, v,,v;. In this case, the norms
(i.e. errors) |[(s, — aAvV,) — so™||, |[(si — aAv;) — si™||, ||[vo — vo™||, and ||v; — vi™|| are
all random variables €2 — Rs(, and they therefore induce probabilites on subsets of R,



respectively. Thus, in the following sections, the probabilites

Prob(]|(s, — alAv,) —8o™||| > a,),

Prob(]|(s; — aAv;) —si™|| > @),
Prob(||v, — vo™|| > b,), and
Prob(||v; — vi"™|| > b;)

will be used to bound the effects of GPS measurement errors on conflict detection. Here, the
distances a, and a; and the speeds b, and b; are standardized navigation accuracy parameters.

Finally, given D and T', a conflict between the ownship and the intruder will be modeled
as the random variable Cp r : @ — B that maps y € Q into predicted_conflict?(D,T,s,(x) —
si(X), Vo(X) — vi(X))-

The fact that the function Cp r is a random variable is not immediately obvious. In fact,
if k is any Boolean function on four vectors, it is not necessarily true that (s,, v,,s;, v;)
is a random variable on 2. While it is true that scalar multiples, sums, dot products,
cross products, etc. of random variables ) — R? are also random variables, the definition
of the random variable Cp 1 involves an existential quantifier (i.e. 3) in the definition of
predicted_conflict?. However, the following lemma has been formally proved in PVS.

Lemma 1 The Boolean function Cpr is a random variable on €.

Proof: The conflict detection algorithm CD2D is equivalent to the predicate predicted_conflict?
(the proof of this fact is provided in the PVS formal development available from [17]). Thus,
the predicate predicted_conflict? can be replaced by CD2D in the definition of Cp without
changing the function. It therefore suffices to show that the function that maps an element
x of € to CD2Dp r(s0(X), Vo(X),si(X), Vi(x)) is a random varible. This expression is of the
form

fFx) it g(x) =0,
h(x) if g(x)/ =0,
where f,h: Q2 — B and ¢g: 0 — R are all random variables. This function is equal to
f - Charg + h - Char_g, where £ = {x € Q]|g(x) = 0}, =F is the complement of F, and
Char denotes the characteristic function of a given set. Since the function g is a random
variable, F and —~F are by definition elements of ¢(£2), and so their characteristic functions
are random variables. Hence, the function f - Charg + h - Char_g is a sum of products of
random variables, and it is therefore a random variable as well. [

Since Cp,r is a random variable, the probability that the two aircraft are actually in
conflict is formally defined as

CD2Dp 7(80(X), Vo(X); 8i(X), Vi(X)) = {

Prob(predicted_conflict?(D,T,s, — s;, v, — v;)) = P({x € Q|Cpr(x) = True}).

3.2 Distribution of the ADS-B Random Variable

Under the assumption that there is no ADS-B signal interference due to multiple intruder
aircraft, the distribution of ADS-B message loss A follows a Poisson distribution as discussed



in [3], where it is used to model signal attenuation. Other failures of ADS-B systems, such
as faulty equipment, are not addressed in this paper. The probability that a given ADS-B
message from the intruder aircraft will not be received by the ownship, which is equal to
p({0}), is (approximately) given by 1 — (%)k with r < ry, where k = 6.4314 and ry = 96.6
nmi (178.9 km) [3]. The number r is the current distance between the two aircraft. Thus,
if it is known that the ownship and the intruder are no greater than 60 nmi (111 km)
apart, a reasonable distance for most commercial aircraft given short lookahead times such
as 3 minutes, then the probability that a given message will be received is bounded below
by 0.953, where in the formal language of random variables, this is expressed as P({x €
Q] A(x) = 0}) > 0.953. The specific probability 0.953 is not critical to the constructions in
this paper. Thus, the probability that a given ADS-B message sent by the intruder will be
received by ownship will be denoted by the variable 7:

n=P({x € QlA(x) =0}).

The key assumption that can be used to deduce that A follows a Poisson distribution is
that whether any particular ADS-B message from the intruder aircraft is received by the
ownship is independent from whether any other, different, ADS-B message from the intruder
is received, for ¢ > 0. This implies that for each ¢ > 0, the probability that the last ADS-B
message sent by the intruder that was received by the ownship was the ¢ + 1-st message ago
(sent « -7 in the past) is given by

P(4;) =n(1 —n), (3.1)

where

A = {x € Q[A(x) = i}.

This is because the last i messages (sent 0, a1, ... and ai—1 seconds ago) have been dropped,
which has a probability of (1 — )¢ of occurring, and the message sent exactly i-seconds ago
was not dropped, which has a probability of 7 of occurring.

4 Safety Buffers

As noted in previous sections, the correctness of a conflict detection algorithm cdp r can be
affected by errors in GPS measurements or delays in ADS-B message updates. To counteract
the effects of these errors on the conflict detection probe cd, a distance 1) and a non-negative
time A can be artificially added to the distance D and the time 7" when they are used as
parameters in cd. That is, to make the algorithm more likely to return True, the parameters
D+ and T 4+ X\ can be used in place of D and T in the algorithm cd. The distance ¥ and
the time \ are called lateral and temporal safety buffers, respectively, because the algorithm
cdpiy,ria is more likely to return True than cdp r, and hence they are more conservative
from a safety standpoint.
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4.1 Probability of Conflict

Given the use of safety buffers 1 and X in the conflict detection algorithm cd, as described
above, a missed alert occurs when cdp.yy1711(S6™, Vo™, 8i"", vi™") returns False but the air-
craft are actually in conflict. So an upper bound for the probability of a missed alert is
actually an upper bound on the probability Prob(predicted_conflict?(D,T,s, — s;, v, — V;))
that the aircraft are actually in conflict (cf. Section 3.1). Define G to be the set of x € Q
where at least one of the following inequalities holds:

[(80(x) — @ A(X)Vo(X)) — S0 ll| > a0,

[(si(x) — @A) vi(x)) — si"[| = a;,
[Vo(x) — Vo™ || = bo, or
[vi(x) = vi™ || > bs.

Define 7 = {x € Q|Cpr(x) = True}. Note that the set 2 decomposes as an infinite
union of pairwise disjoint sets {2 = U;’io A;, where A; is defined in Section 3.2. Recall that for
a given set Z, Z° denotes the complement of Z. Then standard probabilistic manipulations
can be used to show that the probability Prob(predicted_conflict?(D,T,s, — s;, Vo, — V;))
decomposes as an infinite sum as follows.

Prob(predicted_conflict?(D, T, s, — s;,v, — v;)) = P(T)
=P(TNG)+ P(T NG
=P(TNG)+ P(U(T NA;N gc)> (4.2)

1=0

:P(ng)+§:P(TmAmgC).

=0

Since A; C 7 N A; N G°, it holds that Prob(predicted_conflict?(D,T,s, — 8;,V, — V;)) <
P(G) + > 2o P(T N A; N G°). This formula implies that for any non-negative number d,
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which represent a specific number of messages, the following series of inequalities hold.

Prob(predicted_conflict?(D,T,s, — s;, v, — v;)) < P(G) + Z P(TNA;NGY

=0

o d
=PG) + Y P(TNnANG)+> P(TNANG)
i=d+1 =0

) d

<PG)+ Y P(A)+ > PTNANG) (4.3)
i=d+1 1=0

9] d

=P(G)+ Y n(l—n)'+ > P(TNANG)

i=d+1 i=0
d

= P(G) + (1= + > P(TNANG).
i=0

The second to last equality follows trivially from the equation for P(A;) in Section 3.2.
Finally, the last equality follows directly from the standard formula for the sum of a geometric
series.

Formula (4.3) has been formally proved in PVS and can be found in the ACCoRD devel-
opment at [17]. The number d can be chosen so that the finite sum is a good approximation
to the infinite sum (since (1 — n)?*! is quite small). Therefore, Formula (4.3) states that

d
Prob(predicted_conflict?(D, T, s, — s;, vV, — v;)) = P(G) + (1 —n)*™ + Z P(TNA, NG,
=0

when d is sufficiently large.

4.2 Probability of a Missed Alert

Suppose now that confidence intervals are known for the accuracy of the random variables
S, Si, Vo, and v;. That is, suppose that probabilities ps,, Pvo, Psi, and p,; are known such that

Prob(||(so — Yv,) — 80" ||| > a0) < pso,
P’I"Ob(“(Si — TVI) - Sim” Z ai) é Dsi,

4.4
Prob(||ve — vo|| = b,) < puo, and (4:4)
Prob([[vi —vi™ || = bi) < pui.
It follows immediately that
P(g) S DPso _I_ Dsi + Puo _I_ Pui- (45)
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Examples of such bounds ps,, o, Psi, and p,; on these probabilities can be found in DO-
242A [24], which specifies several system performance confidence-levels that are to be in-
cluded in ADS-B messages, and details how precise and trusted the contained state infor-
mation is.

Formulas (4.3) and (4.5) imply that if P(7 N A; NG°) = 0 for i < d, then the probability
that cdp 7(S,, Si, Vo, v;) = True is bounded above by p., + Dsi + Pvo + Pui + (1 — 7). The
following lemma presents particular choices of the safety buffers ¢» and A that can be used
to ensure that this bound is satisfied. The lemma refers to the distances a, and a; and the
speeds b, and b; that define the probabilities pso, Pvo, Psis Pui- 1t also uses the time «, which
is the regular interval at which ADS-B messages are sent by the intruder aircraft. The value
7 is an upper bound to the predicted time of closest approach.

It is important to note that the next lemma is a mathematical statement and holds for all
input vectors and real numbers. In the context of this paper, it is interpreted as a statement
about aircraft positions and velocities, but it holds as a general mathematical statement.
In this paper, it is used for conflict detection between aircraft that are flying with constant
velocities in a situation where subsequent dropped messages are independent events, but
none of these assumptions is needed for the lemma to be true. It has been formally proved
as a mathematical statement in PVS.

m

Lemma 2 Let s™ =8, — 8™, v = v, — vi"" with ||v""|| > b, + b;, d be an integer, and

e \=ad,
o 7= ([Is"]+ao+ai+ A (V"] +bo + 1)/ (V"] — b6 — b3),
o ¢ =a,+a;+ (min(7T,7) + X)(b, + b;).
If cdpiyria(S0™, Vo™, 8™, Vi) = False, then, for j € {0,...,d}, P(T NA;NG°) =0.

Proof: It suffices to prove that, given the hypotheses of this lemma, 7 N A; NG is empty.
Suppose by way of contradiction that x € 7 N A; N G° Since x € 7, it follows that
cdp.r(so(X),si(X), Vo(X), vi(x)) = True. Since x € A;, A(x) = j. Finally, since x € G, the
equations [[(s,(x)—7vo(x)) 8™ | < o, |(5:(x)— a7 Vi) ™|l < @, [Volx) Vo™ | < b
and ||v;(x) — vi"™|| < b; are all satisfied.

As in Section 2, let s and v denote the relative position and velocities s = s, — s; and
v = v,—v;. [t is easy to see that ||s(x)+tv(x)|? is a quadratic in ¢ that attains its minimum
at t = —s(x) - v(x)/IIVOOII?. Thus, the fact that cdpr(s.(x),si(X), Vo(X), Vi(x)) = True
(since x € T) implies that there exists ¢t* € [0, min(7, —s(x) - v(x)/|[v(x)]|?)] such that
Is(x) + t*v(x)|| < D. Then t* + aj € [0,min(T,—s(x) - v(x)/[[v()||*) + A] and since
s =8, —s; and v = v, — v;, it suffices to show that ||s™ + (t* + «j)v™| < 1 + D, which
is a contradiction, since cdpyyra(So™, Vo™, ", vi") = False. If it can be proved that
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t* 4+ aj < min(7,7) + A, then the result will follow, since

< Iso™ = (so(x) = @i vo Q) + [Isi™ = (si(x) — cjvi (X))

+ (" 4+ aj)l[ve™ = vo(X) | + (" + af)[[vi™ = vi) | + [Is + v ()|
= [Iso™ = (so(x) — 2 AQ) V(X)) + [Isi™ = (si(x) — @A) vi (X))l

+ (" + aj)[[ve™ = Vo) + (" + aj)[[vi™ = vi() | + [Is + v (X))
< a4 a; + (t*+ aj)b, + (t* + aj)b; + D
< a,+a; + (t* 4+ N (b, + b;) + D
<¢+D.

Since t* + aj € [0, min(T, —s(x) - v(x)/[[v(X)||?) + A] and aj < ), it therefore suffices
to prove that —s(x) - v(x)/|[[v(x)|I> < 7. The Cauchy-Schwartz inequality implies that
=s(x) - v(x) < [[sCOI - [Vl so it suffices to prove that [[s(x)[l/[Iv(x) < 7. This
inequality can be verified by proving the following two inequalities.

IO < lIs™ [ + a0+ ai + X~ (V"] + bo + bi),
VOO = V™[ = bo — bi.

These two formulas follow from basic applications of the triangle inequality and the facts
that [|(so(x) — ajvo(x)) = so™ || < a0, [[(si(x) — ajvi(x)) — ™[l < ai, [[Vo(x) = Vo™ < bo,
|vi(x) — vi"™|| < b;, and oj < A O

The following theorem uses Lemma 2 to give an upper bound on the probability of a
missed alert, if the safety buffers ¢» and A given in that lemma are used. This theorem
follows trivially from that lemma and Formula (4.3) and has also been proved in in the PVS
theorem prover. Just as for Lemma 2, it is important to note that the next theorem is a
mathematical statement and therefore holds for all input vectors and real numbers. In the
context of this paper, it is interpreted as a statement about aircraft that are flying with
constant velocities in a situation where subsquent dropped messages are independent events,
but it holds as a general mathematical statement without even these assumptions.

M= v, —vi" with |[v™| > b, +b;, d be an integer, and

Theorem 1 Lets™ =s,”" —s;", v
e \=ad,
o 7=([[s"|| +ao+a;+ A ([[v"] + b+ b:))/([[V"| = bo — bi),

o ) =a,+ a; + (min(T,7) + N) (b, + b;).
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If cdpiyra(So™, Vo™, 8™, Vi) = False, the probability of a missed alert, i.e. the probabil-
ity that cdp 1(S,,Si, Vo, Vi) = True, is no greater than ps, + Peo + Psi + Pui + (1 — )4, where
1 is the the probability that a given ADS-B message sent by the intruder will be received by
ownship.

A missed alert is a conflict that is not detected. Artificially increasing the distance D
and the lookahead time 7" in the conflict probe cd will make missed alerts less likely. The
theorem above gives specific formulas for safety buffers that can be used to ensure that the
probability of a missed alert is sufficiently small. The speeds b, and b;, and the probabilities
Psos Puos Psi and p,,; are variables in this theorem and can be changed based on the application.
Formulas (4.4) and (4.5) express the relationships between a,, a;, by, b;, Pso, Pvos Psi and p;.
Given these inputs, the associated upper bound for the probability of a missed alert is

Pmissed—alert = Pso + Do + DPsi + Dui + (1 - n)dJrl' (46)

In the equation above, the amount v that D should be artificially increased to ensure
that the probability of a missed alert is less than p,,issed—atert 1S given by

= a,+ a; + (min(7T, 7) + \) (b, + b;), (4.7)

where as above, a denotes the time period between consecutive ADS-B broadcasts by the
intruder aircraft. It should be noted that Formulas (4.7) and (4.6) imply that if the velocity b
dominates the calculation of v, then as 1) increases, d increases as well, and so the probability
of a missed alert decreases.

The following is a formulation of Theorem 1 in PVS. The purpose of including the state-
ment here is not technical, but rather so that the reader can conceptualize what is meant by
a statement that is proved in PVS, which checks proofs that are entered into it by a human
for logical correctness. The specifics of the PVS notation are unimportant, so most of the
technical details are omitted.

Theoreml : THEOREM
sm = som-sim AND vm = vom-vim AND norm(vm)>bo+bi AND
P(GsetPosition(so,som,vo,alpha,A,ao0)) <= prso AND
P(GsetVelocity(vo,vom,bo)) <= prvo AND
P(GsetPosition(si,sim,vi,alpha,A,ai)) <= prsi AND
P(GsetVelocity(vi,vim,bi)) <= prvi AND
lambda = alphaxd AND
tau = (norm(sm)+ao+ai+(lambda) *
(norm(vm)+bo+bi))/(norm(vm)-bo-bi) AND
psi = aotai+(min(T,tau)+lambda)*(bo+bi) AND
cd(D+psi,T+lambda,som,vom,sim,vim)=FALSE AND
adsb_distr?(eta) (A)
IMPLIES
P({chi:Omega | conflict_rv(D,T,so,vo,si,vi)(chi) = Truel})
<= prso+prvo+prsi+prvi+expt(l-eta,d+1)
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4.3 Special Case: Absolute Bounds

The special case when absolute bounds on the positions and speeds of the ownship and the
intruder are known and when there are no messages lost is considered next. That is, rather
than letting s,, s;, v,, v; denote random variables, it is assumed in this section that these are
positions and velocities, respectively, i.e., elements of R2. It is further assumed that there are
no dropped ADS-B messages. Thus, each of the equations ||s, —s,™|| < @y, ||si —si™|| < @i,
Vo — Vo[l < by, and ||v; — vi™|| < b; is satisfied. In this case, Theorem 1 gives a safety
buffer v for the separation distance D that ensure no missed alerts, assuming that there are
no information delays such as dropped ADS-B messages. Thus, in the following corollary,
each of the probabilities pso, pvo, Psi, and p,; and the integer d, all occurring in the statement
of Theorem 1, are zero. The corollary is a mathematical statement and therefore holds for all
input vectors and real numbers. In the context of this paper, it is interpreted as a statement
about aircraft that are flying with constant velocities, in a situation where the errors on the
positions and velocities have known bounds and the probability of a message being dropped
is zero. However, it holds as a general mathematical statement without these assumptions.

Corollary 1 Let s™ =8, — 8™, v = v,™ — vi" with ||[v"|| > b, + b;, and
o 7= ("l + a0+ ai)/([v"] — b — bi),
o ) =a,+ a; +min(T,7)(b, + b;).
If predicted_conflict?(D,T,s,v) holds, then, cdpiy1(8e™, Vo™, 8™, vi™) = True.

Corollary 1 is proved in PVS by using Theorem 1 with a and d both equal to 0. The statement
of that theorem depends on a probability space €2, but it is true for any choice of 2. To
prove Corollary 1, the trivial probability space (€2, 0(£2)), where Q = {1}, o(2) = {¢, {1}},
P(¢) =0, and P({1}) =1, is used.

It may be the case that instead of bounds on the measurement errors of the velocity
vectors v, and v;, bounds are known on the errors in the measurements of the ground
speeds ||v,|| and ||v;|| and track angles track(v,) and track(v;) of the two aircraft. This may
be the case when velocity information is broadcast not as a vector but as a track angle and
ground speed pair. In this case, error bounds on track angles and ground speeds can be used
to deduce error bounds on the velocity vectors themselves, thereby reducing this problem to
that solved by Corollary 1.

Recall that the track angle track(u) of a vector u is the angle a € [0, 27) that satisfies

u = (|u cos a, |u] sin «).

Here, €50, €si, €aos €90y €ai, and g4 Will denote the errors on the positions, track-angles, and
ground speeds of the ownship and the intruder, respectively, i.e.,
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”So - Som" S €s0s
”Si - Sim" < Esiy

|track(v,) — track(voe™)| < €ao,

(4.8)
ol = vl < 2
track(v;) — track(vi™)| < €ai,
Vil = [vi™ | < egi,

where €, and &; are strictly positive constants that denote the position error bounds for
the ownship and intruder aircraft, respectively; €., and e,; are strictly positive constants
that denote the track error bounds for the ownship and intruder aircraft, respectively; and
€40 and g4, are strictly positive constants that denote the ground speed error bounds for the
ownship and intruder aircraft, respectively.

Since €q0, €ai, £g0 and g4 are measurement errors, they are small compared to the mea-
sured values. Therefore, the following inequalities are assumed.

8OCO

Ego
[Vo™| (1 — coseano)

IA A

(4.9)

IN
I

Eai

Egi S
[vi™] (1 — coseni) < 4.

Velocity errors are given in terms of track error bounds, ., for the ownship and ¢,; for
the intruder, and ground speed error bounds, ¢4, for the ownship and 4 for the intruder.
However, as illustrated by Figure 1, velocity errors are also bounded by a circle.

The following lemma can be used to apply Corollary 1 in the case where error bounds on
track angles and ground speeds are known instead of error bounds on the velocity vectors
themselves. As for Corollary 1, it is interpreted as a statement about aircraft that are flying
with constant velocities, in a situation where the errors on the positions and velocities have
known bounds and the probability of a message being dropped is zero. However, it holds
as a general mathematical statement about vectors and real numbers, without any extra
assumptions, including these assumptions about aircraft and dropped messages.

Lemma 3 Let v, Vi, Vo™, Vi, €ao; Egos Eais and eg; be such that they satisfy formulas (4.8)
and (4.9). It holds that

2

vo?

2

V%)

|vo — VOmH2 <e

[vi —vi"* < e
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Figure 1: Ownship Velocity Error Bounds

where

oo = /2 1Vo™ | (IVo™] + £60)(1 = 08 €a) + €42,

o = \ 2 IV | (V3] + 200) (1 = cOs 20) + 2

5 Numerical Examples

DO-242A [24] specifies several system performance confidence-levels that are to be included
in ADS-B messages detailing how precise and trusted the contained state information is.
The relevant ones to this paper are the navigation accuracy categories for position and
velocity (NACp and NACy). The 12 NACp categories define a maximum distance for errors
in position (NACp 11 is < 3 m, NACp 0 is > 10 nmi); similarly the 5 NACy categories
define maximum velocity error (NACy 4 is < 0.3 m/s, NACy 0 is > 10 m/s). That is, these
numbers specify the parameters ag, a; and b,, b;, respectively. Both NACp and NACy specify
that the stated values will fall within a 95% confidence interval, which is equivalent to saying
that pso, Puo, Psi and p,; are all equal to 0.05.

The ADS-B model described in Section 3.2 predicts that when aircraft are 60 nmi (111
km) apart, n > 0.95325 (to 5 decimal places), while if they are 20 nmi (37 km) apart,
1 > 0.99996.

Table 1 assumes both aircraft can produce data within the NACp 9 category (position
error < 30 m) and the NACy 4 category (velocity error < 0.3 m/s). These numbers along
with Equations (4.6) and (4.7) are used to compute the amount the distance that D needs
to be increased, i.e., 1, as well the associated upper bounds on the probabilities of missed
alerts for varying choices of d. More accurate position data can reduce ¢ by approximately
0.03 nmi (556 m), while less accurate data, especially velocity, can significantly increase
the buffer ). Recall that, as above, d denotes the number of consecutive ADS-B messages
from the intruder that were not received by the ownship, since the last received message
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from the intruder. The following table assumes that ADS-B updates from the aircraft are
broadcast once per second (o = 1 second and A = d seconds). The relative ground speed
|v"™|| = 514 m/s corresponds to two aircraft heading directly at each other, each traveling at
approximately 500 knots. Furthermore, ||[v™|| = 206 m/s corresponds to aircraft approaching
each other at speeds of 200 knots.

T ||Sm” ||Vm|| 1/) (D buﬁer) Pmissed—alert

(s) | (nmi) | (m/s) (A=0to35s) A=0s A=1s A=2s A=3s
300 | 60 | 514 | 0.10 nmi (190-193 m)

300 | 60 | 206 | 0.13 nmi (240-242 m)

130 60 514 0,00 nmi (168170 m) 0.24675 | 0.20219 | 0.20010 | 0.20000
180 | 60 206 | 0.09 nmi (168-170 m)

300 | 20 | 514 | 0.06 nmi (103-107 m)

300 | 20 206 | 0.09 nmi (168-172 m)

130 20 514 | 0.06 nmi (103-107 m) 0.20004 | 0.20000 | 0.20000 | 0.20000
180 20 206 | 0.09 nmi (168-170 m)

Table 1: Lookahead, distance, relative speed, buffer sizes, and probability of missed alert

Note that Equation (4.7) compensates for situations where the projected time of closest
approach, i.e., the term 7 in Theorem 1, is known to be less than the lookahead time T'. If
both aircraft are 20 nmi from each other and are traveling at 500 knots, they could collide
in as few as 72 seconds.

It should also be noted that the upper bounds on the probabilities of missed alerts in
this table are high. However, this is not due to imprecision in the presented methods but
to the fact that the confidence intervals specified in DO-242A are for 95% confidence and
provide little knowledge of what is happening the other 5% of the time. These formulas are
quite practical, and in fact could be used to calculate the probability of missed alerts that
are significantly smaller if more precise confidence intervals were available for the positions
and velocities of the aircraft. For instance, if 99.999% confidence intervals were available for
position and velocity errors in DO-242A, these formulas would provide safety buffers that
guarantee that the probability of a missed alert for a state-based conflict is less than 0.004%.
In general, the confidence intervals specified in DO-242A are too liberal to ensure greater
than 95% reliability for state-based conflict detection systems, since they allow aircraft to
broadcast incorrect state information up to 5% of the time. Thus, to ensure near 100%
reliability of state-based conflict detection systems, confidence intervals greater than those
found in DO-242A for position and velocity errors would be required.

6 Conclusion

This paper concerns lateral and temporal safety buffers in state-based conflict detection
methods. These methods use the current state of the aircraft and a mass-point trajectory
model (nominal trajectories, according to Kuchar and Yang’s taxonomy) to alert a predicted
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violation of separation minima. In airborne concepts, state-based systems are used as backup
of more advance separation assurance systems. For these kinds of systems, an approach for
modeling aircraft state information uncertainty is proposed. The approach is illustrated
with models of errors in GPS and ADS-B devices. However, other type of devices can be
modeled in similar ways. These probabilistic models used to estimate the probability of a
missed alert. From that estimation, analytical definitions of safety buffers are provided that
ensure that the probability of a missed alert is sufficiently small. Numerical examples of
safety buffers for GPS and ADS-B parameters are given.

The analysis presented in this paper considers uncertainty in the current state information
and dropped messages due to signal attenuation. Therefore, trajectory uncertainties, such
as navigation errors, and communication errors due to dependent events are not part of the
proposed uncertainty modeling approach. It can be argued that this simplification yields
analytical definitions of safety buffers that are appropriate for airborne state-based conflict
detection systems, since these systems are executed in each aircraft as frequently as position
and surveillance information is updated. Future work will consider a trajectory prediction
model that uses previous state information of the aircraft.

This paper only addresses the analytical definition of separation buffers for lateral sep-
aration. While it is true that lateral safety buffers are most useful for detecting horizontal
conflicts, it is easy to see how they could be used for 3D conflict detection as well. If a lateral
conflict detection algorithm returns false, then it is guaranteed that the aircraft are not in
3D conflict for this lookahead time as well.

The results presented in this paper have been mechanically checked using an interactive
theorem prover (PVS), which provides strong guarantees that the mathematical development
is correct. The use of a mechanical theorem prover requires a detailed description of the
problem and a meticulous proof process. This level of rigor is justified by the critical role that
aircraft separation plays in the overall safety of the next generation of air traffic management
systems. It should be noted that the current development in PVS models only piecewise
linear aircraft trajectories, which are, arguably, good approximations of actual trajectories
over short lookahead times (e.g. less than 3 minutes).
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